Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.

نویسندگان

  • L Fales
  • L Kryszak
  • J Zeilstra-Ryalls
چکیده

The common precursor to all tetrapyrroles is 5-aminolevulinic acid (ALA), and in Rhodobacter sphaeroides its formation occurs via the Shemin pathway. ALA synthase activity is encoded by two differentially regulated genes in R. sphaeroides 2.4.1: hemA and hemT. In our investigations of hemA regulation, we applied transposon mutagenesis under aerobic conditions, followed by a selection that identified transposon insertion mutants in which hemA expression is elevated. One of these mutants has been characterized previously (J. Zeilstra-Ryalls and S. Kaplan, J. Bacteriol. 178:985-993, 1996), and here we describe our analysis of a second mutant strain. The transposon inserted into the coding sequences of hbdA, coding for S-(+)-beta-hydroxybutyryl-coenzyme A dehydrogenase and catalyzing an NAD-dependent reaction. We provide evidence that the hbdA gene product participates in polyhydroxybutyrate (PHB) metabolism and, based on our findings, we discuss possibilities as to how defective PHB metabolism might alter the level of hemA expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression.

The hemA gene codes for one of two synthases in Rhodobacter sphaeroides 2.4.1 which catalyze the formation of 5-aminolevulinic acid. We have examined the role of PrrA, a DNA binding protein that is associated with the metabolic switch between aerobic growth and anoxygenic photosynthetic growth, in hemA expression and found that hemA transcription is directly activated by PrrA. Using electrophor...

متن کامل

Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide.

Rhodobacter sphaeroides 2.4.1, which is incapable of denitrification, has been found to carry nnrR, the nor operon, and nnrS, which are utilized for denitrification in R. sphaeroides 2.4.3. The gene encoding nitrite reductase was not found in 2.4.1. Expression of beta-galactosidase activity from a norB-lacZ fusion was activated when cells of 2.4.1 were incubated with NO-producing bacteria. This...

متن کامل

Analysis of hemF gene function and expression in Rhodobacter sphaeroides 2.4.1.

The hemF gene of Rhodobacter sphaeroides 2.4.1 is predicted to code for an oxygen-dependent coproporphyrinogen III oxidase. We found that a HemF- mutant strain is unable to grow under aerobic conditions. We also determined that hemF expression is controlled by oxygen, which is mediated, at least in part, by the response regulatory protein PrrA.

متن کامل

Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression.

The ppsR gene (R. J. Penfold and J. M. Pemberton, J. Bacteriol. 176:2869-2876, 1994) from Rhodobacter sphaeroides 2.4.1 functions as a transcriptional repressor of puc and bchF expression. The carboxy terminus of PpsR, containing the putative DNA-binding domain, by itself possesses repressor activity. Intact palindromes having the motif TGT-N12-ACA are required for PpsR activity.

متن کامل

Interacting regulatory networks in the facultative photosynthetic bacterium, Rhodobacter sphaeroides 2.4.1.

Regulation of photosynthetic membrane synthesis in Rhodobacter sphaeroides 2.4.1 is dependent on the interactions of numerous regulatory elements, with two of the most important being the cbb(3) terminal oxidase and the PrrBAC two-component regulatory system. Here, we reveal that the cbb(3) terminal oxidase possesses extensive, additional regulatory activities under anaerobic conditions, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 5  شماره 

صفحات  -

تاریخ انتشار 2001